Kolhapur Institute of Technology's College of Engineering (AUTONOMOUS), Kolhapur.

(An Autonomous Institute)

Syllabus

S.Y. B. Tech.

Computer Science & Engineering

Title of the Course: Computational Mathematics	L	Т	Р	Credits				
Course Code: UCSE301	3	1		4				
Course Pre-Requisite: Basics of Matrix Algebra, Rules and Formulae of Derivative,								
Basic Statistical Concepts, Set Theory.								
Course Description: This Course contains Advanced Linear Algebra, Numerical								
Methods, Probability Distributions, Statistical Techniques and Fuzzy Sets.								
Course Objectives:								
1. To learn mathematical methodologies and models since ma	themat	tics is	the fo	oundation				
of engineering and technology.								
2. To develop mathematical skills and enhance logical thinkin	g pow	er of s	studer	nts.				

- To provide students with skills in advanced linear algebra, probability, statistical techniques and fuzzy sets which would enable them to devise engineering solutions for given situations they may encounter in their profession.
- 4. To increase interest towards the use of mathematics in engineering module.

Course Outcomes:

COs	After the completion of the course the student will be able to
CO1	Find numerical solution of algebraic and transcendental equations using numerical method.
CO2	Explain the fuzzy sets and fuzzy logic in dealing with real problems.
CO3	Make use of method of least squares to fit the curves for given bivariate data.
CO4	Apply the knowledge of probability distributions to solve problems arising in engineering.
CO5	Solve the systems of simultaneous linear equations using factorization method.
CO6	Determine fuzzy numbers and use it in fuzzy equations.

CO-PO Mapping:

		-		-				-		-	-			-
CO	PO	PO8	PO	PO	PO	PO	PS	PS						
	1	2	3	4	5	6	7		9	10	11	12	01	02
CO1		2												
CO2	3													
CO3			3											
CO4		3												1
CO5				2										1
CO6			2											

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

MSE	30					
ISE 2	10					
ISE 1 and ISE 2 are based on assignment/decl	ared test/quiz/seminar/Group Discussions	etc.				
MSE: Assessment is based on 50% of course of ESE: Assessment is based on 100% of course of	content (Normally first three units)					
(normally last three units) covered after MSE						
Course Contents:						
Unit 1: Advanced Linear algebra		7 Hrs.				
1. Revision of linear dependence of ve	ctors.					
2. Solutions of simultaneous linear equ	ations using Gauss-Jordan method.					
3. Solutions of simultaneous linear equ	nations using LU decomposition method.					
4. Determination of Eigen Value by Ite	eration method.					
5. Solution of non-linear simultaneous	equations.					
Unit 2: Numerical methods		6 Hrs				
1. Solutions of algebraic and transcend	lental equations methods.	111 5.				
2. Bisection method.						
3. Newton-Raphson method.						
4. Secant method.						
5. Numerical Integration.						
6. Simpsons 1/3 and 3/8 rules.						
7. Weddle's rule.						
Unit 3: Probability and Distribution	S	8 Hrs				
1. Introduction of probability.						
2. Laws of probability.						
3. Conditional probability.						
4. Baye's Theorem.						
5. Random variables.						
6. Discrete distributions: Binomial and	Poisson.					
7. Continuous distributions: Normal.						

Unit 4: Statistical Techniques	8
1. Lines of regression of bivariate data, Correlation coefficient.	Hrs.
2. Fitting of Curves by method of Least-squares.	
3. Fitting of Straight lines.	
4. Fitting of Parabola.	
5. Fitting of Exponential curves.	
6. Tests of significations: Z-test, t-test (For single mean)	
7. Chi-square test for independences of Attributes.	
Unit 5: Introduction to Fuzzy sets and Fuzzy Logic	7 Hrs.
1. Crisp Sets: An overview.	
2. Fuzzy sets: Basic concepts	
3. Operations on fuzzy sets.	
5. Multivalued Logics.	
6. Inference from conditional fuzzy propositions.	
Unit 6: Fuzzy Arithmetic	8 Hrs
1. Fuzzy numbers.	1115.
2. Fuzzy cardinality	
3. Operations on Fuzzy numbers.	
4. Fuzzy equations of type $A + X = B$ and $A \cdot X = B$.	
Reference Books: 1. Higher Engineering Mathematics by Dr. B. S. Grewal.	
 Linear Algebra by Seymour Lipschutz. Euzzy sets and Euzzy Logic by George L Klir, Bo Yuan 	
4. Probability and Statistics for Computer science by James L. Johnon.	
5. Fundamentals of Mathematical Statistics by Gupta and Kapoor.	
Unit wise Measurable Learning Outcomes:	

Unit 1:--- Advanced Linear algebra

Students are able to

a) Solve simultaneous linear and non linear equations.

b) Determine Eigen Value by Iteration method.

Unit 2:--- Numerical methods.

Students are able to

a) Evaluate integration numerically by Simpsons formulae.

b) Solve transcendental and algebraic equations by using numerical method.

Unit 3:--- Probability and Distributions.

Students are able to

a) Define random variable.

b) Verify the function as probability function.

c) useful to determine a reasonable distributional model for the data.

Unit 4:--- Statistical Techniques

Students are able to

a) Measure the correlation between bivariate data.

b) Apply fitting of curves for bivariate data.

c) Make use of Testing of Hypothesis.

Unit 5:--- Introduction to Fuzzy sets and Fuzzy Logic

Students are able to

a) Understand Basic concept of Fuzzy set theory.

b) Define membership functions.

c) Apply Basic operations on Fuzzy set.

Unit 6:--- Fuzzy Arithmetic

Student are able to

a) Determine Fuzzy numbers and Fuzzy cardinality.

b) Apply operate arithmetic operations on fuzzy numbers.

c) Solve fuzzy equations.

Title of the Course: Discrete Mathematical Structures	L	Т	Р	Credits

Course Code: UCSE302	3	1		4			
Course Pre-Requisite: Mathematics - Probability theory, Set theory.							
Course Description: This Course consists of concepts of Discrete mathematical structures such							

as Set theory, Algebraic systems, Lattices, Graphs, Counting theory etc.

Course Objectives:

- 1. To use mathematically correct terminology and notations.
- 2. To understand and critically analyze, formulate and solve the mathematical problems and proofs
- 3. To understand the concepts of Discrete Mathematics such as Sets, Algebraic Systems, Graphs, Groups and lattices
- 4. To design and implement experiments on Discrete Structures Truth tables of statement formula, Set Operations, tree traversal techniques etc

Course Outcomes:

COs	After the completion of the course the student will be able to					
CO1	Explain the discrete mathematical structures such as Sets, Algebraic systems, Groups, Probability in the field of Computer Science					
CO2	Solve the problems related to the topics on discrete mathematics					
CO3	Make use of discrete mathematical terminology and concepts in different areas of Computer Science.					
CO4	Develop the implementation of functions and algorithms related to Discrete structures.					

CO-PO Mapping:

СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 01	PSO 02
CO1	3		5		5	0	1	0	,	10		12	01	02
CO2		3												1
CO3		3											1	
CO4			2											1

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks					
ISE 1	10					
MSE	30					
ISE 2	10					
ESE	50					
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.						

MSE: Assessment is based on 50% of course content (Normally first three units)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three units) covered after MSE.

Course Contents:	
Unit 1: Mathematical logic (Text book-1)	8 Hrs
1.1 Statements and Notations	
1.2 Connectives - negation, Conjunction, disjunction, conditional, bi-conditional, Statement	
formulas and truth tables, well formed formulas, Tautologies, Equivalence of formulas,	
Duality law, Tautological implications, functionally complete sets of connectives, other	
connectives	
1.3 Normal and principal normal forms, completely parenthesized infix and polish notations	
1.4 Theory of Inference for statement calculus – validity using truth table, rules of inference,	
consistency of Premises and indirect method of proof.	
Unit 2: Set theory (Text book-1)	8 Hrs
2.1 Basic concepts of set theory, Operations on sets, Ordered pairs, Cartesian Products	
2.2 Representation of discrete structures	
2.3 Relation and ordering - properties of binary relations in a set, Relation matrix and the graph of a relation, Partition and Covering of set, Equivalence relations, Composition of Binary relations, Partial ordering, POSET and Hasse diagram.	
2.4 Functions – types, composition of functions, Inverse functions.	
Unit 3: Algebraic systems (Text book-1)	5 Hrs
3.1 Algebraic systems, properties and examples	
3.2 Semigroups and Monoids, properties and examples, Homomorphism of Semigroups and Monoids	
3.3 Groups: Definition and examples, Subgroups and homomorphism	
Unit 4: Lattices and Boolean algebra (Text book-1)	5 Hrs
4.1 Lattice as POSETs, definition, examples and properties	
4.2 Lattice as algebraic systems, Special lattices	
4.3 Boolean algebra definition and examples	
4.4 Boolean functions	
Unit 5: Permutations, Combinations and Probability theory (Text book-2)	7 Hrs
5.1 The Basics of Counting	
5.2 The Pigeonhole Principle	
5.3 Permutations and Combinations	
5.4 Generalized Permutations and Combinations	
5.5 Discrete Probability	

5.6 Conditional probability	
5.7 Bayes' Theorem	
Unit 6: Graphs (Text book-2)	7 Hrs.
5.1 Introduction to Graphs	
5.2 Graph Terminology	
5.3 Representing Graphs and Graph Isomorphism	
5.4 Connectivity	
5.5 Euler and Hamilton Paths	
5.6 Planar Graphs	
5.7 Introduction to Trees	
Text Books:	
 Discrete Mathematical Structures with Application to Computer Science - J. P. Tremb Manohar (MGH International) Discrete Mathematics and its Applications - Kenneth H. Rosen (AT&T Be (mhhe.com/rosen) 	lay & R. ll Labs)
Reference Books:	

1. Discrete Mathematics - Semyour Lipschutz, MarcLipson (MGH), Schaum's outlines.

2. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", SiE Edition, TataMcGrawHill, 2008,ISBN 10:0-07-066913-9

3. Schaums Solved Problem Series – Lipschutz.

4. Discrete Mathematical Structures – Bernard Kolman, Robert Busby, S.C.Ross and NadeemurRehman (Pearson Education)

Title of the Course: Data StructuresLPTCredits										its				
Course C	ode:	UCSE	20303						3	3	-	-	3	
Course P	re-re	quisit	e: Con	nputer	Progra	ammin	g							
Course O	bject	ives:												
1. T	o lear	n basio	c conce	epts of	Clang	guage.								
2. T	o bec	ome fa	miliar	with a	idvanc	ed data	a struc	tures s	uch as	Stacks	, Queue	es, Trees o	etc.	
3. T S	o ana tacks,	lyze ar Trees	nd solv , and C	ve prob Graphs.	lems u	ising a	dvance	ed data	struct	ures su	ch as L	ists, Link	ed Lists, (Queues,
4. T	o wri	te prog	grams	on Linl	ked Lis	sts, Do	ubly L	inked	Lists,	Trees e	tc.			
Course O	utco	nes:												
СО	Afte	er com	pletio	n of the	e cours	se a stu	dent s	hould l	be able	e to:				7
CO 1	Def	ine the	basic	terms	of Lin	ear Lis	ts, Li	nked L	ist, Do	oubly L	inked I	List, Non	Linear	_
01	Dat	a Struc	ctures(Binar	y Trees	s, AVI	. Trees	s, Grap	hs)					
CO 2	Cho	ose th	e appr	opriate	and o	ptimal	data s	tructu	e for a	a specif	ied app	lication		
CO 3	Ana	lyze T	ïme C	omple	xity ar	nd Men	nory C	Comple	xity o	f differ	ent algo	orithms		
CO 4	CO 4 Write programs and applications with Static and Dynamic data structures													
Mapping	of co	ourse o	outcon	nes wit	h pro	gramo	outcor	nes:						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO3	-	2	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	-	2	-	-	-	-	-	-	-	-	-	3	3
Assessme	nt:													<u> </u>

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks

ISE-I	10			
ISE-II	10			
MSE	30			
ESE	50			
Course Contents:				
Unit 1: Basics of Data Structure:		06		
Abstract Data Type (ADT), control struct Space and Time Complexity, Recursion,	ure, array, function, structure, pointer, Algorithm, Towers of Hanoi and Ackermann's function, etc.	Hrs		
Unit 2: Stacks and Queues:				
Stack: Definition, representation, implementation, applications of stack for expression evaluation and conversionQueue: Definition, representation, implementation, applications of queue, circular queue and priority queue				
Unit 3: Linked Lists: Definition, representation, implementation lists, stack and queue implementation using	on and operations on singly, doubly and circular linked ng linked list	09 Hrs		
Hashing: Hashing functions, overflow handling, open and closed hashing, rehashing				
Unit 4: Searching and Sorting Techniques: Search: Importance of searching, types- sequential search, binary search Sort: Different types: bubble sort, selection sort, insertion sort, merge sort, quick sort, radix sort, heap sort				
Unit 5: Trees:				
Basic terminology, binary tree and its representation, binary tree traversal methods, binary search tree, AVL tree, B tree, B+ tree, Heaps and its operations.				
Unit 6: Graphs:		05		
Basic terminology and representation of g graph traversal techniques- Breadth First,	graphs using adjacency matrix, storage representation, Depth First	Hrs		

Textbooks:

- 1. Data Structure using C-A. M. Tanenbaum, Y. Langsam, M. J. Augenstein (PHI)
- 2. Data Structures- A Pseudo code Approach with C Richard F. Gilberg and Behrouz A. Forouzon, Cengage Learning, Second Edition.
- 3. Schaum's Outlines Data Structures Seymour Lipschutz (MGH), Tata McGraw-Hill.

Reference books:

- 1. Fundamentals of Data Structures Horowitz, Sahni CBS India
- 2. An introduction to data structures with Applications- Jean-Paul Tremblay, Paul. G. Soresan, Tata Mc-Graw Hill International Editions, Second Edition.

Title of the Course: Digital Logic Design & Microprocessors Course Code: UCSE0304	L	Τ	Р	Credi t
	4	-	-	4

Course Prerequisite: Fundamentals of Electronics and Computers, Basic Number System

Course Description:

The course is designed to provide knowledge of basic arithmetic and logical operations in digital systems, different sequential and combinational logic design. The subject provides fundamentals of 8085 & 80x86 Family Microprocessors. The subject gives idea of how assembly language programming works. This course is prerequisite for hardware based courses like Computer Architecture & Organization.

Course Objectives:

1) To provide knowledge of basic arithmetic and logical operations in digital systems.

2) To provide hands on knowledge about different sequential and combinational logicdesign.3) To provide knowledge about construction & working of different microprocessors and

peripheral.

4) To provide knowledge about assembly language programming.

Course Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Describe working of basic digital components
CO2	Illustrate different microprocessor operational & addressing modes
CO3	Analyze changes in microprocessor evolution
CO4	Develop Assembly Language Programs

CO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO	2
CO1	3												1		
CO2			2												
CO3		2													
CO4		2													

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on quiz / test.

Content (normally last three modules) covered after MSE. Course Contents: Unit 1: Number Systems & Boolean Algebra Analog and digital systems, representation of signed numbers, 2's complement arithmetic, BCD addition & subtraction, octal & Hexadecimal addition and subtraction, Derived gates. Reduction of Boolean expression (standard SOP & POS), simplification of boolean expression using K-map (upto 5 variable), Adders & Subtractors design using gates. Unit 2: Combinational & Sequential Logic Design Multiplexer, implementation of expression using MUX, Demultiplexer, decoder(74138), BCD to 7 segment decoder. Classification, Flip-flops(S-R, J-K, T, D)using gates, Race around condition Master -Slave J-K Flip Flop, Counters (Asynchronous & Synchronous), Design examples, Shift registers , State transition diagram, excitation table. Unit 3: 8085 Microprocessor Architecture The 8085 MPU, Microprocessor communication and bus timing, Dem ultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 instruction groups, addressing modes. Unit 4: 8085 Programming Techniques Writing and execution assembly language program, counters & delays, Stack, Instructions, vectored interrupts, RIM and SIM instructions . Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding, Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes, (I/O, BSR). Unit 5: S086 Microprocessor and Assembly Language Architec	MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weightage for cour	se
Course Contents:Unit 1:- Number Systems & Boolean Algebra Analog and digital systems, representation of signed numbers, 2's complement arithmetic, BCD addition & subtraction, octal & Hexadecimal addition and subtraction, Derived gates. Reduction of Boolean expressions, Boolean function 	content (normally last three modules) covered after MSE.	
Unit 1:- Number Systems & Boolean AlgebraAnalog and digital systems, representation of signed numbers, 2's complement arithmetic, BCD addition & subtraction, octal & Hexadecimal addition and subtraction, Derived gates. Reduction of Boolean expression, Boolean function representation, expansion of Boolean expression (standard SOP & POS),simplification of boolean expression using K-map (upto 5 variable), Adders & Subtractors design using gates.Unit 2:- Combinational & Sequential Logic Design Multiplexer, implementation of expression using MUX, Demultiplexer, decoder(74138), BCD to 7 segment decoder. Classification, Flip-flop, Counters (Asynchronous & Synchronous), Design examples, Shift registers , State transition diagram, excitation table.Unit 3:- 8085 Microprocessor Architecture The 8085 MPU, Microprocessor communication and bus timing, Demultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 interrupt, RST instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions . Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes (I/O, BSR).10Unit 5:- 8086 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model10Unit 6:- 80x86 Family and Pentium Microprocessors The 80386 Microprocessor: The memory System, Special Pentium Registers, Pentium Microprocessor : The Memory System, Special Pentium Registers, Pentium Memory Management, The Pentium Microprocessor : Internal st	Course Contents:	
Unit 2:- Combinational & Sequential Logic Design Multiplexer, implementation of expression using MUX, Demultiplexer, decoder(74138), BCD to 7 segment decoder. Classification, Flip-flops(S-R, J- K,T,D)using gates, Race around condition Master –Slave J-K Flip Flop, Counters (Asynchronous & Synchronous), Design examples, Shift registers , State transition diagram, excitation table.8 HrUnit 3:- 8085 Microprocessor Architecture The 8085 MPU, Microprocessor communication and bus timing, Demultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 instruction groups, addressing modes.9 Hrs.Unit 4:- 8085 Programming Techniques Writing and execution assembly language program, counters & delays, Stack, Instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes (I/O, BSR).10 Hrs.Unit 6:- 80x86 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model7 HrUnit 6:- 80x86 Family and Pentium Microprocessors The 80386 Microprocessor : The memory System, Special 80386 Registers Virtual 8086 Mode, The Memory Paging Mechanism, The Pentium Microprocessor : Internal structure of the Pentium Registers, Pentium 4: Memory Interface, Register Set, Hyper Threading Technology CPUID10 Hrs	Unit 1:- Number Systems & Boolean Algebra Analog and digital systems, representation of signed numbers, 2's complement arithmetic, BCD addition & subtraction, octal & Hexadecimal addition and subtraction, Derived gates. Reduction of Boolean expressions, Boolean function representation, expansion of Boolean expression (standard SOP & POS), simplification of boolean expressions using K-map (upto 5 variable), Adders & Subtractors design using gates,	8 Hrs.
Unit 3:- 8085 Microprocessor ArchitectureThe 8085 MPU, Microprocessor communication and bus timing, Demultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 instruction groups, addressing modes.9Unit 4:- 8085 Programming Techniques Writing and execution assembly language program, counters & delays, Stack, Instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions . Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes (I/O, BSR).10 Hrs.Unit 5:- 8086 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model7 HrUnit 6:- 80x86 Family and Pentium Microprocessors The 80386 Microprocessor : The memory System, Special 80386 Registers Virtual 8086 Mode, The Memory Paging Mechanism, The Pentium Microprocessor : Internal structure of the Pentium Registers, Pentium Pro Microprocessor : Internal structure of the Pentium Pro The Pentium Pro Microprocessor : Internal structure of the Pentium Pro The Pentium Yanagement, The Pentium Pro Microprocessor : Internal structure of the Pentium Pro 	Unit 2:- Combinational & Sequential Logic Design Multiplexer, implementation of expression using MUX, Demultiplexer, decoder(74138), BCD to 7 segment decoder. Classification, Flip-flops(S-R, J- K,T,D)using gates, Race around condition Master –Slave J-K Flip Flop, Counters (Asynchronous & Synchronous), Design examples, Shift registers, State transition diagram, excitation table.	8 Hrs.
Unit 4:- 8085 Programming TechniquesWriting and execution assembly language program, counters & delays, Stack, Instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions .10Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes (I/O, BSR).10Unit 5:- 8086 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model7 HrUnit 6:- 80x86 Family and Pentium Microprocessors The 80386 Microprocessor : The memory System, Special 80386 Registers Virtual 8086 Mode, The Memory Paging Mechanism, The Pentium Microprocessor : The Memory System, Special Pentium Registers, Pentium Memory Management, The Pentium Pro Microprocessor : Internal structure of the Pentium Pro The Pentium 4 : Memory Interface, Register Set, Hyper Threading Technology CPUID10	Unit 3:- 8085 Microprocessor Architecture The 8085 MPU, Microprocessor communication and bus timing, Demultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 instruction groups, addressing modes.	9 Hrs.
Unit 5:- 8086 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model7 HrUnit 6:- 80x86 Family and Pentium Microprocessors The 80386 Microprocessor: The memory System, Special 80386 Registers Virtual 8086 Mode, The Memory Paging Mechanism, The Pentium Microprocessor : The Memory System, Special Pentium Registers, Pentium Memory Management, The Pentium Pro Microprocessor : Internal structure of the Pentium Pro The Pentium 4 : Memory Interface, Register Set, Hyper Threading Technology CPUID10	Unit 4:- 8085 Programming Techniques Writing and execution assembly language program, counters & delays, Stack, Instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions . Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O. The 8255 programmable peripheral interface, operating modes (I/O, BSR).	10 Hrs.
Unit 6:- 80x86 Family and Pentium MicroprocessorsThe 80386 Microprocessor: The memory System, Special 80386 RegistersVirtual 8086 Mode, The Memory Paging Mechanism,The Pentium Microprocessor : The Memory System, Special Pentium Registers,Pentium Memory Management,The Pentium Pro Microprocessor : Internal structure of the Pentium ProThe Pentium 4 : Memory Interface, Register Set, Hyper ThreadingTechnology CPUID	Unit 5:- 8086 Microprocessor and Assembly Language Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model	7 Hrs.
	Unit 6:-80x86 Family and Pentium Microprocessors The 80386 Microprocessor: The memory System, Special 80386 Registers Virtual 8086 Mode, The Memory Paging Mechanism, The Pentium Microprocessor : The Memory System, Special Pentium Registers, Pentium Memory Management, The Pentium Pro Microprocessor : Internal structure of the Pentium Pro The Pentium 4 : Memory Interface, Register Set, Hyper Threading Technology CPUID	10 Hrs.

Textbooks:

- 1. Fundamental of Digital Circuits –A. Anand Kumar, 2 nd Edition, PHI Private Limited.
- 2. Microprocessor architecture, programming & applications Ramesh S. Gaonkar, New Age International publication.
- 3. Microprocessors & Interfacing: Programming & Hardware, Douglas V. Hall, Tata McGraw Hill

References:

- 1. Digital fundamentals Floyd & Jain, , Pearson education, eighth edition, 2007
- 2. Digital Design Morris Mano, Pearson Education
- 3. Modern Digital Electronics, R.P.Jain, 3rd Edition, Tata McGraw Hill, 2003
- 4. Digital systems, principles and applications Ronald Tocci, Neal S. Widmer, Gregory Moss (Pearson Education) 9th Edition.

Unit wise Measurable students Learning Outcomes:

After learning these Unit students will be able to-

1.1 Perform number system conversions and arithmetic operations in different number systems.

1.2 Analyze, expand or minimize boolean expression.

1.3 Use K-Map to simplify boolean expression.

2. Model different Flip-Flops and Counters.

3. Explain architectural details of 8085 microprocessor.

4.1 Classify Instruction set based on their purpose and size.

4.2 Determine addressing mode of 8085 Instructions.

4.3 Demonstrate programming skill in the assembly language programming using 8085 instruction set.

5.1 Explain architectural details of 8086 microprocessor.

5.2 Demonstrate programming skill in the assembly language programming using 8086 instruction set.

6. Analyze changes in different 80x86 family Microprocessors & Pentium Microprocessors.

Title of the Course: Data Communication and NetworksLTP									
Course Code: UCSE0305	3	-	-	3					
Course Pre-Requisite:									
Course Objectives:									
1. Help students understand basic components and devices of data communication system a									
2. Study the layers in OSI and TCP/IP reference model									
3. Study and implement the protocols and algorithms working at	differ	ent lay	ers in	OSI and					
TCP/IP reference models									
Course Learning Outcomes:									
Course Learning Outcomes.									
CO After the completion of the course the student should be									
able to									
CO1 Explain the basic concepts and components of data communicat	tion sys	tem							
CO2 Compare and contrast various multiplexing and spreading techn	iques a	nd tran	ismiss	ion					
CO3 media at physical layer									
Analyze various error detection and correction techniques at dat	a link l	ayer							
CO4 Classify different multiple access protocols at medium access co	ontrol s	ublaye	r						
CO BO Monning									
CO-1 O Mapping.									
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10	PO11	PO12	PSO	l PSO2					
			1						
CO1 5 1 CO2 2 3 1			1						
CO3 2 3 1 CO4 2 3 1			1						
			1						
Assessments :									
Two components of In Semester Evaluation (ISE). One Mid Semester Ex	amina	tion (N	ISE) ai	nd one					
End Semester Examination (ESE) having 20%, 30% and 50% weights re	spectiv	ely.	10 L) u						
Assessment Marks									
ISE 1 10									
MSE 30									
IDE 2 IU FSE 50									
ISE 1 and ISE 2 are based on Online objective test and guiz.									
MSE: Assessment is based on 50% of course content (Normally first three modules)									
ESE: Assessment is based on 100% course content with 60-70% weighta	ge for	course	conter	nt					
(normally last three modules) covered after MSE.									
Course Contents:									
Unit 1: Introduction				o Hrs.					
1.2 Network Hardware									
1 3 Network Software									
			I						

1.4 Reference Models	
Unit 2:- Communication Basics	8 Hrs.
2.1 Data & Signals :- Analog & Digital, Periodic analog signals, digital signals,	
Transmission Impairments, Data rate limits & Performance	
2.2 Digital Transmission :- Line coding & line coding schemes (Unipolar, polar &	
bipolar) Transmission modes	
Unit3 :- Multiplexing and Spreading	7 Hrs.
3.1 Multiplexing: Frequency-Division multiplexing, Wavelength-Division multiplexing,	
Synchronous Time-Division multiplexing, Statistical Time-Division multiplexing	
3.2 Spread Spectrum: Frequency Hopping Spread spectrum(FHSS), Direct Sequence	
Spread Spectrum	
Unit 4: Transmission Media	7 Hrs.
4.1 Transmission media :- Guided, Unguided media	
4.2 Network Hardware components: - Transceivers & media converters, Repeaters, NIC &	
PC cards, Bridges, switches, Routers	0.11
Unit 5: Data Link Control Layer	8 Hrs.
4.1 Error Detection and Correction	
4.2 Block Coding, Linear Block Codes	
4.3 Cyclic Codes	
4.4 Checksum	
4.5 Data Link Control: Framing	
4.6 Flow and Error Control	
4.7 Protocols: Noiseless channels, Noisy Channels	
Unit 6: The Medium Access Control Sublayer	6 Hrs
5.1 Channel allocation Problem	
5.2 Multiple Access Protocols: ALHOA, CSMA	
5.3 Collision free protocols	
5.4 Limited contention protocols.	
Taythooks	
1 Data Communications and Networking – Behrouz A Forouzan (The McGraw Hill)	(Unit
2.3.4.5)	(enit
2. Computer Networks – Andrew S. Tanenbaum- (Prentice Hall) 5th Edition (Unit 1,	6)
References:	,
1. Computer communications and Networking Technologies – Michael A Gallo	
(Cengage Learning)	
2. Data & computer communications:- William Stallings (Pearson Education).	
3. Data communication and computer Networks Ajit Pal (PHI Learning).	

		_							
Title o	f the Course: Digital Logic Design & Microprocessors	L	Т	P	Credit				
Lab		0	0	2	1				
Course	e Code: UCSE0331	v	v	_	-				
Course	Course Prerequisite: Digital Logic Design & Microprocessors								
Course Microp	Course Description: This subject covers practical details of subject Digital Logic Design & Microprocessors.								
Course 1. To pr 2. To pr 3. To pr	Course Objectives: 1. To provide hands on experience on construction of basic digital logic circuits 2. To provide knowledge about assembly language programming using 8085 instruction set. 3. To provide knowledge about assembly language programming using 8086 instruction set.								
Course Learning Outcomes:									
CO	CO After the completion of the course the student should be								
	able to								
CO1	Model basic digital circuits								
CO2	Develop simple assembly language programs using 8085 instruction set								
CO3	Develop simple assembly language programs using 8086 instruct	tion set	ţ						

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2												1	
CO2		2												
CO3		2												

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE	50
ISE are based on practical performed/ Quiz	/ Mini-Project assigned/ Presentation/ Group

Discussion/Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:

Experiment No. 1:	: Study	of Ba	asic &	Univ	ersal	Gates	5
	•\ T T	1 /	1	1 •	C 1	•	. /

Experiment No. 1. Study of basic & Oniversal Gates	
Aim and Objectives:i) Understand working of basic gates (OR, AND, NOT)	2 Hrs.
ii) Understand working of universal gates (NOR, NAND)	
iii) Construct any gate using universal gates.	

outcomes. Students will be use to construct thui use for busic, universal gues	
Theoretical Background: Logic Gates Characteristics	
Experimentation: i) Test different binary inputs to basic gates and observe the	
behaviour from output.	
ii) Construct basic gate using universal gates	
Results and Discussions: i)Truth Table for basic logic gates.	
ii) Truth-Table for universal gates	
iii) Compare Truth-Table of constructed circuit.	
Conclusion: i)We can verify characteristics of basic logic gates	
ii) We can construct any basic gate using universal gate	
Experiment No. 2:-Study of Boolean algebra & De Morgan's theorem	2 Hrs.
Aim and Objectives: Understand Boolean algebra & De Morgan's theorem	
Outcomes: Students will be able to demonstrate De Morgan's theorem	
Theoretical Background: Boolean algebra & De Morgan's theorem	
Experimentation: Construct circuit to verify De Morgan's theorem using gates.	
Results and Discussions: Truth-Table for Boolean expression to verify De-	
-Morgan's theorem.	
Conclusion: De Morgan's theorem is proved using Truth-Table	
Experiment No. 3:-Study of R-S and J-K flip-flops	2 Hrs.
Aim and Objectives: Construct R-S and J-K flip-flops	
Outcomes: Students will be able to implement R-S and J-K flip-flops	
Theoretical Background: Characteristics of different Flip-Flops	
Experimentation: Construct R-S and J-K flip-flops	
Results and Discussions: Truth Tables for R-S and J-K flip-flops	
Conclusion: Implemented circuit for R-S and J-K flip-flop	
Experiment No.4:- Study of Counters	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter	2 Hrs.
Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuit with seven segment display	2 Hrs.
Experiment No.4:- Study of CountersAim and Objectives: Implementing UP and DOWN counterOutcomes: Students will be able to implement UP and DOWN counterTheoretical Background: Characteristics and types of counterExperimentation: ConstructUP and DOWN counterResults and Discussions: Truth Tables for UP and DOWN counterConclusion: Implemented circuit for UP and DOWN counterExperiment No.5:-Interfacing counter circuit with seven segment displayAim and Objectives: Interfacing counter circuit and seven segment display	2 Hrs.
Experiment No.4:- Study of CountersAim and Objectives: Implementing UP and DOWN counterOutcomes: Students will be able to implement UP and DOWN counterTheoretical Background: Characteristics and types of counterExperimentation: ConstructUP and DOWN counterResults and Discussions: Truth Tables for UP and DOWN counterConclusion: Implemented circuit for UP and DOWN counterExperiment No.5:-Interfacing counter circuitwith seven segment displayAim and Objectives: Interfacing counter circuit and seven segment displayOutcomes: Students will be able to connect counter circuit to seven segment	2 Hrs.
Experiment No.4:- Study of CountersAim and Objectives: Implementing UP and DOWN counterOutcomes: Students will be able to implement UP and DOWN counterTheoretical Background: Characteristics and types of counterExperimentation: ConstructUP and DOWN counterResults and Discussions: Truth Tables for UP and DOWN counterConclusion: Implemented circuit for UP and DOWN counterExperiment No.5:-Interfacing counter circuitwith seven segment displayAim and Objectives: Interfacing counter circuit and seven segment displayOutcomes: Students will be able to connect counter circuit to seven segment	2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display 	2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display 	2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuit with seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display 	2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display 	2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Fyperiment No.6:-Realization of 4/5 variable K-maps 	2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect circuit and seven segment display Results and Discussions: Observation of output on seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect circuit and seven segment display Results and Discussions: Observation of output on seven segment display Results and Discussions: Observation of output on seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression. 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect counter circuit and seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression. 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Results and Discussions: Observation of a seven segment display Conclusion: Built interface for counter circuit and seven segment display Experiment No.6:-Realization of 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression. Theoretical Background: K-Map basics, Boolean algebra, De Morgan's theorem Experimentation: Use the K-map method minimize expression 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect counter circuit and seven segment display Theoretical Background: Working of seven segment display Experimentation: Build interface for counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression. Theoretical Background: K-Map basics, Boolean algebra, De Morgan's theorem Experimentation: Use the K-map method minimize expression Results and Discussions: Verify minimized expression with Truth-Table Conclusion: Byfollowing K-map. expression can be minimized 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect circuit and seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression. Theoretical Background: K-Map basics, Boolean algebra, De Morgan's theorem Experimentation: Use the K-map method minimize expression Results and Discussions: Verify minimized expression with Truth-Table Conclusion: Byfollowing K-map, expression can be minimized 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect circuit and seven segment display Results and Discussions: Observation of output on seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Experiment No.6:-Realization of 4/5 variable K-maps Aim and Objectives: Minimizing 4/5 variable expression using K-Map Outcomes: Students will be able to minimize 4/5 variable expression. Theoretical Background: K-Map basics, Boolean algebra, De Morgan's theorem Experimentation: Use the K-map method minimize expression Results and Discussions: Verify minimized expression with Truth-Table Conclusion: Byfollowing K-map, expression can be minimized 	2 Hrs. 2 Hrs. 2 Hrs.
 Experiment No.4:- Study of Counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: ConstructUP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter Experiment No.5:-Interfacing counter circuitwith seven segment display Aim and Objectives: Interfacing counter circuit and seven segment display Outcomes: Students will be able to connect counter circuit to seven segment display Outcomes: Students will be able to connect counter circuit and seven segment display Results and Discussions: Observation of output on seven segment display Results and Discussions: Observation of output on seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conclusion: Built interface for counter circuit and seven segment display Conc	2 Hrs. 2 Hrs. 2 Hrs. 2 Hrs.

Outcomes: Students will be able to explain instructions of 8085 microprocessor Theoretical Background: Architecture & Instruction Set of 8085 microprocessor Experimentation: Use various instructions of 8085 microprocessor in simulator Results and Discussions: Table of Instructions with purpose, mnemonic & size Conclusion: Demonstrated instructions using simulator	
 Experiment No.8:- 8085 Assembly Language Programs for - A. Addition / Subtraction of two 8-bit numbers B. Alter contents of register in 8085 C. Arrange no.s in ascending / descending order Aim and Objectives: Writing simple assembly language programs (listed above) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8085 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion: 	2 Hrs.
 Experiment No.9:- 8085 Assembly Language Programs for - D. Block Transfer / Exchange E. Find square of numbers from 0 to 9 using table of a square F. Generate RST 7.5 interrupts Aim and Objectives: Writing simple assembly language programs (listed above) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8085 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion: 	2 Hrs.
 Experiment No.10:- 8086 Assembly Language Programs for - A. Sorting an array for 8086 B. Searching for a number or character in a string for 8086 Aim and Objectives: Writing simple assembly language programs (listed above) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8086 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results 	2 Hrs
 Experiment No.11:- 8086 Assembly Language Programs for - A. String manipulations for 8086 B. Digital clock design using 8086 Aim and Objectives: Writing simple assembly language programs (listed above) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8086 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion: 	2 Hrs

 A. ADC and DAC B. Stepper Motor Aim and Objectives: Writing simple assembly language programs (listed above) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8086 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion: 	2 Hrs
 Textbooks: 1. Fundamental of Digital Circuits –A. Anand Kumar, 2 nd Edition, PHI Private Lir 2. Microprocessor architecture, programming & applicationsRamesh S. Gaonkar, Ne Age International publication. 3. Microprocessors & Interfacing: Programming & Hardware, Douglas V. Hall, Tata 	nited. w
 References: 1. Digital fundamentals Floyd & Jain, , Pearson education, eighth edition, 2007 2. Digital Design –Morris Mano, Pearson Education 3. Modern Digital Electronics, R.P.Jain, 3rd Edition, Tata McGrawHill, 2003 4. Digital systems, principles and applications – Ronald Tocci, Neal S. Widmer, Gree Moss (Pearson Education) 9 th Edition. 	gory

Title of	the Course: Data Communication and Networking Lab L T P Credit								Credit					
Course	2 1									1				
Course	Course Pre-Requisite:													
Course Description: Study and implement basic techniques in data communication system														
Course	Obje	ectives	5:											
To exp	expose students to:-													
1.	. Basic components of data communication system													
2.	Netw	orkin	g devic	es and t	opolog	ies								
3.	Laye	red str	ucture	of com	puter n	etwork	8							
4.	Func	tional	ities of	Physica	al and I	Data Lir	nk Laye	r						
Course	Lear	ning (Outcon	nes:										
CO	After the completion of the course the student should be													
	able to													
CO1	Design sample network based on organizations requirements													
CO2	Demonstrate working of different interconnecting devices using simulation tools													
<u>CO3</u>	Make use of different network testing tools and commands for sample network testing and analysis							analysis						
CO4	4 Design program for framing, flow control and error correction and detection techniques using													
	programming language													
CO-PC) Mar	ning												
0010	, 11 1 11	P8												
CO	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2
	1	2												
CO1			2	1		1		1						
				-		-		-						
CO2					3			1					2	

 CO4
 2
 1

 According to the second sec

2

Assessments :

CO3

Teacher Assessment:

One components of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50% and 50% weights respectively.

1

Marks	Assessment
25	ISE
50	ESE(POE)

Course Contents:

Experiment No. 1:- Campus Network Design using CISCO Packet Tracer

2

Experiment No. 2:- Demonstration of Interconnecting Devices using CISCO Packet Tracer	
Experiment No.3:- Study of connectivity test tools with all its option	2 Hrs
Experiment No. 4:- Wireshark Network Protocol Analyzer	2 Hrs
Experiment No. 5:- Design and Implementation of Framing Techniques	2 Hrs
A) Character Count	
B) Bit Stuffing	
Experiment No. 6:- Design and Implementation of Error Detection and Correction Codes	2 Hrs
A) Cyclic Redundancy Check	
B) Hamming Code	
Experiment No. 7:- Design and Implementing Elementary data link protocol (Stop & wait protocol)	2 Hrs
Experiment No. 8:- Design and Implementing Elementary data link protocol (Go Back N)	2 Hrs
Experiment No. 9:- Design and Implementing Elementary data link protocol (Selective Repeat)	2 Hrs

Course Code: UCSE0333 -	s. eues, Trees of Lists, Link	etc.	2 Queues,					
Course Pre-requisite: Computer Programming Course Objectives: 1. To learn basic concepts of C language structures, Arrays, lists pointers 2. To become familiar with advanced data structures such as Stacks, Que 3. To analyze and solve problems using advanced data structures such as Stacks, Trees, and Graphs. 4. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: Co After completion of the course a student should be able to: Define the basic terms of Linear Lists. Linked List. Doubly Linked	s. eues, Trees (Lists, Link	etc. ed Lists, (Queues,					
Course Objectives: 1. To learn basic concepts of C language structures, Arrays, lists pointers 2. To become familiar with advanced data structures such as Stacks, Que 3. To analyze and solve problems using advanced data structures such as Stacks, Trees, and Graphs. 4. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: Co After completion of the course a student should be able to: Define the basic terms of Linear Lists. Linked List. Doubly Linked	s. eues, Trees (Lists, Link	etc. Ted Lists, (Queues,					
 To learn basic concepts of C language structures, Arrays, lists pointers To become familiar with advanced data structures such as Stacks, Que To analyze and solve problems using advanced data structures such as Stacks, Trees, and Graphs. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: CO After completion of the course a student should be able to:	s. eues, Trees (Lists, Link	etc. ed Lists, (Queues,					
 To become familiar with advanced data structures such as Stacks, Que To analyze and solve problems using advanced data structures such as Stacks, Trees, and Graphs. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: CO After completion of the course a student should be able to:	eues, Trees (Lists, Link	etc. ed Lists, (Queues,					
 3. To analyze and solve problems using advanced data structures such as Stacks, Trees, and Graphs. 4. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: CO After completion of the course a student should be able to:	Lists, Link	ed Lists, (Queues,					
Stacks, Trees, and Graphs. 4. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: CO After completion of the course a student should be able to: Define the basic terms of Linear Lists Linked List								
 4. To write programs on Linked Lists, Doubly Linked Lists, Trees etc. Course Outcomes: CO After completion of the course a student should be able to: 								
Course Outcomes: CO After completion of the course a student should be able to: Define the basic terms of Linear Lists Linked List								
CO After completion of the course a student should be able to:								
CO After completion of the course a student should be able to: Define the basic terms of Linear Lists Linked List								
Define the basic terms of Linear Lists Linked List Doubly Linked								
Define the basic terms of Linear Lists Linked List Doubly Linked								
Define the basic terms of Linear Lists, Linked List, Doubly Linked	d List, Non	Linear D	ata					
CO1 Structures(Binary Trees, AVL Trees, Graphs)								
CO 2 Choose the appropriate and optimal data structure for a specified a	O ? Choose the appropriate and optimal data structure for a specified application							
Choose the appropriate and optimal data structure for a specified application								
CO 3 Write programs and applications with Static and Dynamic data stru	CO 3Write programs and applications with Static and Dynamic data structures							
Mapping of course outcomes with program outcomes:								
			<u> </u>					
COs PO PO) PO12	PSO1	PSO2					
CO1 3		1	1					
CO2 3		1	1					
CO3 2		+	2					

Assessment:

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50% and 50% weight age respectively.

Assessment	Marks
ISE	50
ESE(POE)	50

Course Contents:

Assignments based on topics covered in course UCSE0303 Data Structures:

- 1. Program based on arrays, structures and pointers.
- 2. Program based on functions and recursion.
- 3. Program for developing an application using stack.
- 4. Program for developing an application using queue and circular queue.
- 5. Program for developing an application using singly linked list.
- 6. Program for developing an application using doubly linked list.
- 7. Program for developing an application using circularly linked list.
- 8. Program based on implementation of hashing and rehashing.
- 9. Program based on implementation of linear search, binary search.
- 10. Program based on one of the sorting techniques.
- 11. Program based on one of the sorting techniques.
- 12. Implementation of recursive and non-recursive tree traversals.
- 13. Implementation of basic binary search tree and its application.
- 14. Program based on AVL tree / B-tree.
- 15. Program based on representation of graphs
- 16. Program based on DFS and BFS search.

Textbooks:

- 1. Data Structures- A Pseudo code Approach with C Richard F. Gilberg and Behrouz A. Forouzon, Cengage Learning, Second Edition.
- 2. Schaum's Outlines Data Structures Seymour Lipschutz (MGH), Tata McGraw-Hill.
- 3. The C Programming langauge Kernighan and Ritchie

Reference books:

- 1. Data Structure using C- A. M. Tanenbaum, Y. Langsam, M. J. Augenstein (PHI)
- 2. An introduction to data structures with Applications- Jean-Paul Tremblay, Paul. G. Soresan, Tata Mc-Graw Hill International Editions, Second Edition.

SEM-II

Title of the Course: Automata Theory L T P Credit									redit					
Course Code: UCSE0401										3	1		4	
Course	Pre-R	equisit	e: Disci	rete Ma	athema	tics, So	ets, Ca	rtesian	Produc	et and F	unction	5		
Course	Course Description: This course deals with the theoretical background of computer science.													
Course Objectives:														
1. To expose the students to the mathematical foundations and principles of computer science														
2. To strengthen the students' ability to carry out formal and higher studies in computer science														
3. To make the students understand the use of automata theory in Compliers & System programming.														
4. To make the student aware of mathematical tools, formal methods & automata techniques for														
compu	computing.													
Course	e Lear	ning ()	outcon	nes:										
CO	Aftor	the of	mnlot	ion of	the co	urco tl	a stud	lant ch	ould b	o oblo t	0			
co	Alter	the co	mpier	1011 01	the co	ui se u	ie stuu	ient sn		e able t	0			
<u>CO1</u>	F 1	• • • • • • • • •					1.4	4						
$\frac{CO1}{CO2}$	Expla	ain type	es of I	ormal I	angua	ges and	1 their	accepto	ors					
C02	Dalat	a tha a		iguage	es on un	le Dasis	the me	odorna	ures	anutant	ashnala	aiaa		
CO3	Desis		mput		mode	is with	me me			fied pro	bloma	gies		
C04	Desig	gn com	putatio	onal ma	achine	s or va	rious t	ypes I c	or speci	ned pro	biems			
CO-PO Mapping:														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	2													
CO3		2												1
CO4			3											1
Assess Teache Two co	ments er Asso ompon	: essmer ents of	nt: In Ser	nester	Evalua	ation (I	SE), O	ne Mic	l Seme	ster Exa	minatio	on (MSE) and o	ne
EndSer	nester	Exami	ination	(ESE)	havin	g 20%,	<u>, 30% a</u>	and 50	% weig	hts resp	ectively	· .		
Asses	sment						Mark	.s						
ISE I							10							
MSE							30							
ISE 2							10							
ESE							50		, -	10	<u>.</u> .			
ISE 1 a	nd ISE	$\pm 2 \text{ are}$	based	on assi	gnmer	nt/decla	ared te	st/quiz	/semina	ar/Grou	p Discus	ssions et	c.	
MSE: A	Assess	ment is	based	on 50	% of c	oursec	ontent	(Norn	nally fii 700/	rst three	module	es)		11
ESE: A	ssessn	nent is $1 - 1$	based	on 100	J% COU	rsecoi	ntent w	111160-	/U% W	eightage	e Ior co	urse con	tent (no	ormally
last three modules) covered after MSE.														
Course Contents:														
UNII-			ucal I		on, Ke	gular		ages d	x r mito	e Auton			vð Hr	'S.
I ne Pri	nciple	oi Ma	tnemat	ical In	ductio	n Kecu	rsive I	Jefiniti	ions, De	eminitio	n & ty	pes of		

grammars & languages, Regular expressions and corresponding regular languages,							
examples and applications, unions, intersection & complements of regular languages,							
Finite automata-definition and representation, on-deterministic F.A.,NFA with null							
transitions, Equivalence of FA's, NFA's and NFA's with null transitions.							
UNIT-II: Kleene's Theorem:	04 Hrs.						
Part I & II statements and proofs, minimum state of FA for a regular language,							
minimizing number of states in Finite Automata.							
UNIT-III: Grammars and Languages:	10 Hrs.						
Derivation and ambiguity, BNF & CNF notations, Union, Concatenation and *'s of							
CFLs, Eliminating production & unit productions from CFG, Eliminating useless							
variables from a context Free Grammar. Parsing: Top-Down, Recursive Descent and							
Bottom-Up Parsing							
UNIT-IV: Push Down Automata	04 Hrs.						
Definition, Deterministic PDA & types of acceptance, Equivalence of CFG's & PDA's.							
UNIT-V: CFL's and non CFL's :	04 Hrs.						
Pumping Lemma and examples, intersections and complements.							
UNIT-VI: Turing Machines: Models of computation, definition of Turing Machine as	10 Hrs.						
Language acceptors, combining Turing Machines, Computing a function with a TM,							
Non-deterministic TM and Universal TM, Recursively enumerable languages,							
Unsolvable problems.							
Textbooks:							
1. Introduction to languages & Theory of computations – John C. Martin (MGH) – Chapters	1, 2, 3, 4, 5, 6, 7, 8.						
2. Discrete Mathematical Structures with applications to Computer Science-J.P.Trembley	& R.Manohar						
(MGH) Chapter 1,							
References:							
1.Introduction to Automata Theory, Languages and computation – John E. Hopcraft, Rajeev Motwani, Jeffrey D.							
Uliman (Pearson Edition).							
2. Introduction to Theory of Computations – Michael Sipser (Thomson Brooks / Cole)							
3 Theory Of Computation-Vivek Kulkarni 1st edition OXFORD university Press							

4. Theory Of Computation A problem Solving Approach Kavi Mahesh Wiley India

Title o	tle of the Course: Computer Graphics L T P											Credit		
Cours	e Code	: UCSE	0402								3			3
Cours	e Pre-l	Requisit	:e:											
Cours	e Desci	ription:	Study	basic a	and co	re conc	epts ir	ı Comj	puter C	Braphics	8			
Cours	Lourse UDJectives:													
1.	To pr	ovide st	udents	with a	n unde	erstand	ing of	variou	s trans	formati	on tech	inique	s and	
					_				_					
2.	2. To provide students with an understanding of various algorithms related to drawing line, circle polygon scanning, filling, windowing and clipping of graphical objects													
circle, polygon scanning, filling, windowing and clipping of graphical objects.														
3.	3. To provide students with an understanding of the mathematics underlying two- and three-											nd three-		
	dime	nsional	inter	oolatin	g curv	es and	l to le	arn th	e War	nock a	nd dep	th-buf	fer (2	Z-buffer)
	algor	ithm us	ed to d	etermi	ne hid	den lin	es and	surfac	es in a	rendere	ed scene	e	_	
4.	To en	able stu	dents t	o acqu	ire pra	ctical l	knowle	edge in	anima	tion, il	lumina	tion, li	ghter	ing and
	rende	ring usi	ng Ope	enGL.										
Cours	e I ear	ning Ar	itcome	×.										
		er the c	omple	.s. tion of	f the c	ourse f	the stu	ident s	should	be abl	e to			
00			ompre			ourse				be usi				
CO1	Explain the basic concepts of interactive computer graphics.													
CO2	Illustrate the core concepts of computer graphics, including viewing, projection,													
	per	spective	and tr	ansfor	matior	in two	o and the	hree di	mensio	ons.				
CO3	Ap	ply the r	nathen	natical	found	ations	to inter	rpolate	e paran	netric ar	nd non-	param	etric	curves
CO4	Δn	alvze ba	s. sic illu	minati	on mo	dels ar	nd noly	oon re	nderin	o meth	ods			
004	2 111	aryze ou	510 1110	iiiiiiuu	on mo	ucis ui	ia pory	50110	nuerm	ig mem	Ju 5.			
CO-P	O Map	ping:												
CC) PC) PO	PO	PO	PO	PO	PO	PO	PO	PO10	PO1	1 PC	P	S PS
	1	2	3	4	5	6	7	8	9			12	0	1 02
CO	1 3				2								_	
	$\frac{1}{2}$ 3	3	2	1	2								2	2 3
CO	3 3	3	2	1										3 3
CO	94	3	2	2										3 3
Assess	ments	:												
Teach	er Asse	essment	:											
Two c	ompon	ents of I	n Sem	ester E	valuat	ion (IS	E), Or	ne Mid	Semes	ster Exa	minati	on (M	SE) a	nd one
EndSe	mester	Examir	ation (ESE) I	naving	20%,	30% ai	nd 50%	6 weig	hts resp	ectivel	у.		
Asses	ssment						N	larks						
ISE I							10)						
MSE							30)						
ISE 2	2						10)						
ESE	1101	10 1	1	0.1	1.		50)	•	•				
ISE 1 :	and ISE	2 2 are b	ased of	n Onlii $500'$	ne obje	ctive t	est, pro	esentat	10n, se	minar,	quiz ete	c.		
MSE:	MSE: Assessment is based on 50% of course content (Normally first three modules)													
LOE. Assessment is based on 100% course content with 60-70% Weightage for course content (normally last three modules) covered after MSE														
Course Contents:														
Unit 1	: Intro	duction	1											6 Hrs.
1.1 Ov	verview	of grap	hics sy	stems	– Vide	eo disp	lay dev	vices,						
1.2 Ra	ster sca	an syster	ns											

1.3 Random scan systems	
1.4 Graphics monitors and Workstations,	
1.5 Input devices, Hard copy Devices, Graphics Software	
	8 Hrs.
Unit 2 : Transformations	
2.1 Basic 2D & 3D transformations - Translation, Scaling, Rotation, Reflection, Shearing,	
Multiple Transformations	
2.2 Rotation about an axis parallel to a coordinate axis	
2.3 Rotation about an arbitrary axis in space	
2.4 Affine and Perspective Geometry	
2.5 Orthographic projections	
2.6 Axonometric projections.	
	8 Hrs.
Unit 3. Paster Scan Cranhies	
3.1 Bresenhams Line drawing algorithm	
3.2 Bresenhams Circle drawing algorithm	
3.3 Scan Conversion techniques: RLF Frame Buffer	
3.4 Scan converting polygons: Edge fill and Seed fill algorithms	
3.4 Scar converting polygons. Edge fin and Seed fin argorithms	
5.5 Anti-anasing	1 Hrs
Unit 4: Viewing and clipping	7 111 5.
Onit 4: viewing and cripping	
4.1 Introduction	
4.2 Windowing and View-porting,	
4.3 Sutherland - Cohen line clipping algorithm	
	8 Hrs.
Unit 5 : Curves and Surfaces	
5.1 Non-parametric and parametric curves	
5.2 Representation of space curves	
5.3 Cubic Spline	
5.4 Parabolic Blended curves	
5.5 Bezier curves	
5.6 B-spline curves	
5.7 Z- buffer algorithm	
5.8 Warnock algorithm	
	8 Hrs.
Unit 6 : Illumination models and surface rendering methods	
6.1 Light sources	
6.2 Basic illumination models	
6.3 Displaying light intensities	
6.4 Halftone patterns and Dithering Techniques	
6.5 Polygon Rendering methods	
6.6 Ray tracing methods	
Textbooks:	D 1

- 1. Computer Graphics C Version second edition –Donald D. Hearn, M. Pauline Baker (Pearson)
- 2. Mathematical elements for Computer Graphics David F. Rogers, J. Alan Adams (MGH

International)

3. Procedural elements for Computer Graphics - David F. Rogers (MGH International)

References:

- 1. Principles of Computer Graphics Theory and Practice Using OpenGL and Maya, Shalini Govil-Pai, (Springer).
- 2. Computer Graphics (second Edition) Zhigang Xiang & Roy Plastock (Schaum's Outline Series, TMGH).
- 3. Computer Graphics Using OpenGL F.S. Hill Jr. Stephen M. Kelley, (Pearson Education).

Unit Wise Measurable Students Learning Outcomes:

1 Explain the graphics devices

2 Explain 2D and 3D transformations

- 3 Explain algorithms for drawing line, circle and polygon filling
- 4 Explain algorithms for clipping and hidden line elimination
- 5 Explain mathematical representation of plane curves and space curves

6 Explain different illumination models

Title of the Course: Computer Networks	L	Т	Р	Credit
Course Code: UCSE0403				
	3	-	-	3

Course Pre-Requisite:

UCSE0305 Data Communication and Networks

<u>Course Description</u>: This course provides a solid understanding of each of the most important networking protocols within the IP suite. The Internet protocol suite provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed and received.

Course Objectives:

1: To make students able to identify client-server model and implement it using socket programming.

2: To introduce students with emerging protocols IPv6 and the ICMPv6 and write applications to communicate using IPv6.

3: To make students familiar with architecture and working of protocols like IP, TCP, UDP, DHCP, DNS, FTP, WWW

4: To make students able to understand working of email system and write an application to send and receive email

Course Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Recall the basic concept of Network, Transport and Application Layer.
CO2	Describe different terminologies of client server programming
CO3	Illustrate different application layer protocol like DHCP, DNS, FTP, HTTP, SMTP and SNMP.
CO4	Describe various protocols supported by multimedia content.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2			2										2	
CO3	3												1	
CO4	2													

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks						
ISE 1	10						
MSE	30						
ISE 2	10						
ESE	50						

ISE 1 and ISE 2 are based on Online objective test and quiz. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE. Course Contenter

Course Contents:	
UNIT-I : : Network Layer	8 Hrs.
Introduction, Network layer services, addressing, IP packet format, ARP, RARP, ICMP, Packet	
routing protocols, congestion control, IPv6- Introduction, addressing, transition from IPv4 to	
IPVo	
UNIT-II: Transport Layer	8Hrs.
Transport layer functions, UDP- datagram, services, applications, TCP - services, segment,	
connection, state transition diagram, Flow control, congestion control, error control, timers.	
UNIT-III: Introduction to Application Layer	6 Hrs.
Client-Server paradigm, client, server, concurrency, socket interface, communication using TCP,	
communication using UDP	
UNIT-IV: DHCP, DNS, FTP and TFTP	9 Hrs.
DHCP: Introduction, Previous Protocols, DHCP operation, Packet Format, DHCP	
Configuration. DNS: Need, Name Space, Domain Name Space, Distribution of name space, and DNS in internet. Possibilition DNS massages. Types of records. Compression examples	
encapsulation, FTP: Connections, Communication, Command processing, File transfer, User	
interface, Anonymous FTP, TFTP.	
UNIT-V: HTTP, Electronic Mail, SNMP	9 Hrs.
HTTP: Architecture, Web Documents, HTTP Transaction, Request & Response messages: header	
& examples, Persistent vs. non persistent HTTP, Proxy Servers. Architecture, User agents,	
addresses, delayed delivery, Aliases, Mail transfer agent SMTP commands & responses, mail	
transfer phases, MIME, Mail Delivery, mail access protocols, SNMP.	9 Ung
UNIT-VI: Multimedia in Internet:	0 1115
Streaming stored audio/video, streaming live audio/video, real-time interactive audio/video, real-	
time transport protocol (RTP), real-time transport control protocol (RTCP), voice over IP (voiP):	
session initiation protocol (SIP) and H.323.	
Textbooks:	
1. TCP/IP Protocol Suite by B. A. Forouzan, TMGH Publication	
References:	
1. Computer Networks by Andrew Tanenbaum, PHI Publication	
2. Computer Networks by William Stallings, PHI Publication	

Title of t	he Course: Computer Organization and Architecture	L	Т	Р	Credit						
Course	Code:UCSE0404	3	-	-	3						
Course P	Course Pre-Requisite: Digital Logic Design (UCSE0304), Digital Logic Design Lab (UCSE0331)										
Course Description: This course will introduce students to the fundamental concepts of modern computer organization and erabitecture. Course, introduces, berdware, design, basis, structure, and behavior, of the various											
architecture. Course introduces hardware design, basic structure and behavior of the various											
It covers i	instruction sets. CPU structure and functions memory system of	rganiza	tion a	eus or 1d arch	ule usel.						
multiproc	essor systems. The emphasis is on studying and analyzing fund	amenta	l issue	s in ar	chitecture,						
design an	d their impact on performance.										
Course	Objectives:										
1. To e	xpose students to basic concepts of computer organization	l.									
2. To p	rovide a comprehensive and self contained view of contro	l unit o	lesign	l .							
3. To an	alyze performance issues in processor and memory design of a	digital	compi	iter.							
4. To le	arn concepts of pipeline architectures and different perform	mance	meas	ures.							
5. To u	nderstand parallel and distributed memory architectures.										
Course Learning Outcomes:											
CO	After the completion of the course the student should	be									
	able to										
CO1	Explain the organization of basic computer and its function, in data formats	nstructi	on typ	es and	L						
CO2	Design a simple control unit for the given task by applying the	e theory	y conc	epts.							
CO3	Analyze some of the design issues in terms of speed, technology, cost, performance.										
CO4	Illustrate memory organization and memory management hardware.										
CO5	Learn the concepts of parallel, pipelined and distributed computer architectures.										
CO-PO Mapping:											

CO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2		2											
CO3	2													
CO4		3		3										
CO5		2												

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

MSE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) course content with60-70% weightage for course content (normally last three modules) course content with60-70% weightage for course content (normally last three modules) course content with60-70% weightage for course content (normally last three modules) course content with60-70% weightage for course content (normally last three modules) Course Contents: 7 Hrs. Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction (zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed-Point Numbers, Floating Point Number-The IEEE 754 floating pointing numbers 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement, multipler control, CPU control unit design 6 Hrs. Unit 3: Interoorperanmed Control, control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative admessing. 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processors. 7 Hrs. Unit 6: Distributed Memory Architecture	ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discuss							
ESE: Assessment is based on 100% course content winh60-70% weightage for course content (normally last three modules) covered after MSE. 7 Hrs. Course Contents: 7 Hrs. Unit 1: Basic Computer Organization 7 Hrs. Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed-Point Numbers, Floating Point Number- The IEEE 754 floating pointing numbers 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction formats. 9 Hrs. Unit 4: Memory Organization formats. 9 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative admerssing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processors 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Lossification, Introduction to Associative memory processors. 7 Hrs. 1: Computer Architecture & Parallel Pr	MSE: Assessment is based on 50% of course content (Normally first three modules							
(normally last three modules) covered after MSE. Course Contents: (This Basic Computer Organization Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed - Point Numbers, Floating Point Number - The IEEE 754 floating pointing numbers 6 Hrs. Unit 2: Hardwired Control Design Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Unit 3: Microprogrammed Control Design Unit 3: Microprogrammed Control Control field encoding, encoding by function, multiplier control, Control field encoding, encoding by function, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 9 Hrs. Unit 6:Distributed Memory Architecture Lossely coupled and tightly coupled architectures. Cluster computing as an application of losely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2. Computer Architecture & Parallel Processing – Kai Hwa	ESE: Assessment is based on 100% course content with60-70% weightage for course conten							
Course Contents: 7 Hrs. Unit 1: Basic Computer Organization 7 Hrs. Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed-Point Numbers, Floating Point Number-The IEEE 754 floating pointing numbers 6 Hrs. Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example-twos complement, multiple control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Toti 6: Distributed Memory Architecture 1 Associative memory processors. 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. <td< td=""><td>(normally last three modules) covered after MSE.</td><td></td></td<>	(normally last three modules) covered after MSE.							
Unit 1: Basic Computer Organization 7 Hrs. Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed - Point Numbers. 6 Hrs. Floating Point Number- The IEEE 754 floating pointing numbers 6 Hrs. Introduction, mult cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control mit organization, Design exampletwos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture Examples – CM*. 7 Hrs. 1. Computer Architecture and Organization	Course Contents:	1						
Evolution of computers - Electronic computers-generations, VLSI era , CPU organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed - Point Numbers, Floating Point Number - The IEEE 754 floating pointing numbers Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design example twos complement multiplier control, CPU control unit design 6 Hrs. Unit 3: Microprogrammed Control Design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example-twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 3: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelning, linear pipelining, classification of pipeline processors. 6 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of losely coupled architecture - Kai Hwang & Briggs (MGH) 7 Hrs. 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2 Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2 Computer Architecture & Paral	Unit 1: Basic Computer Organization	7 Hrs.						
organization , user and supervisor modes, accumulator based CPU, System bus, types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed - Point Numbers, Floating Point Number- The IEEE 754 floating pointing numbers Unit 2: Hardwired Control Design Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design Unit 3: Microprogrammed Control Design Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multi organization Types of memory, Memory systems, multi level, address translation, memory aldressing Unit 4: Memory Organization Types of memory, Memory systems, multi level, address translation, memory aldressification, Introduction to Associative memory processors. Flynn's Classification, Introduction to Associative memory processors. Unit 5: Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled arch	Evolution of computers - Electronic computers-generations, VLSI era, CPU							
types of instruction(zero, one, two and three address machines), RISC& CISC, definition, comparison and examples, Data representation: Fixed - Point Numbers, Floating Point Number - The IEEE 754 floating pointing numbers 6 Hrs. Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Microinstruction addressing, timing, Control unit organization, Design example-twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors. 7 Hrs. Unit 6: Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing –	organization, user and supervisor modes, accumulator based CPU, System bus,							
definition, comparison and examples, Data representation: Fixed - Point Numbers, Floating Point Number - The IEEE 754 floating pointing numbers Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Unit 3: Microprogrammed Control Design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Vinit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Flynn's Classification, Introduction to Associative memory processors, Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MG	types of instruction(zero, one, two and three address machines), RISC& CISC,							
Floating Point Number - The IEEE /54 floating pointing numbers 6 Hrs. Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design exampletwos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 9 Hrs. Pipelining, linear pipelining, classification of pipeline processors. 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 2] Computer Organization - Hamacher Zaky (MGH). 2] Computer system. 3 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate	definition, comparison and examples, Data representation: Fixed - Point Numbers,							
Unit 2: Hardwired Control Design 6 Hrs. Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example-twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organization, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. I. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2) Computer Organization - Hamacher Zaky (MGH). 2] Computer Organization - Hamacher Zaky (MGH). 31 Computer system. 2 Students will be able to understand the basic organization of computer system. 2] Students will be able to differentiate between control unit design method	Floating Point Number- The IEEE 754 floating pointing numbers							
Introduction, multi cycle operation, implementation methods, Hardwired control, design methods, state tables, GCD processor, Classical method, one hot method, Design example twos complement multiplier control, CPU control unit design Unit 3: Microprogrammed Control Design Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. Unit 4: Memory Organization Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 2] Computer Organization - Hamacher Zaky (MGH). 3 Students will be able to understand the basic organization of computer system. 3 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 2: Hardwired Control Design	6 Hrs.						
design methods, state tables, GCD processor, Classical method, one hof method, Design example twos complement multiplier control, CPU control unit design Unit 3: Microprogrammed Control Design Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. Unit 4: Memory Organization Types of memory, Memory systems, multi level, address translation, memory aldcessing Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors. Ivinit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of losely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (M	Introduction, multi cycle operation, implementation methods, Hardwired control,							
Design example twos complement multiplier control, CPU control unit design 6 Hrs. Unit 3: Microprogrammed Control Design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example-twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors. 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Lossely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH). 2 Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain	design methods, state tables, GCD processor, Classical method, one hot method,							
Unit 3: Microprogrammed Control Design 6 Hrs. Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. References: 1] Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 7 II Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 1 Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory <b< td=""><td>Design example twos complement multiplier control, CPU control unit design</td><td></td></b<>	Design example twos complement multiplier control, CPU control unit design							
Basic concepts, control unit organization, parallelism in microinstructions, Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 9 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors. 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors, Flynn's Classification, Introduction to Associative memory processors, Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 7 Unit wise Measurable students Learning Outcomes: 1 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 3: Microprogrammed Control Design	6 Hrs.						
Microinstruction addressing, timing, Control unit organization, Design example- twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors. 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 2] Computer Organization - Hamacher Zaky (MGH). 2] Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 5 Students will be able to understand the distributed memory architectures.	Basic concepts, control unit organization, parallelism in microinstructions,							
twos complement, multiplier control, Control field encoding, encoding by function, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory 6 Hrs. glocation, Caches, Associative memory, direct mapping, set associative 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved 6 Hrs. Flynn's Classification, Introduction to Associative memory processors. 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture - Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 12 Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures	Microinstruction addressing, timing, Control unit organization, Design example-							
tunction, multiple microinstruction formats. 9 Hrs. Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) Vinit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 3 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 5 5 Students will be able to explain various parallel processing architectures. 6 6	twos complement, multiplier control, Control field encoding, encoding by							
Unit 4: Memory Organization 9 Hrs. Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 9 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, 6 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 7 I Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 2 Unit wise Measurable students Learning Outcomes: 1 1 Students will be able to understand the basic organization of computer system. 2 2 Students will be able to differentiate and evaluate performance of various memory levels. 5 5 Students will be able to explain various parallel processing architectures. 6 6 Students will be able to understand the distributed memory architectures. 6	function, multiple microinstruction formats.							
Types of memory, Memory systems, multi level, address translation, memory allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 4: Memory Organization	9 Hrs.						
allocation, Caches, Associative memory, direct mapping, set associative addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, 6 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 2] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 6 Students will be able to understand the distributed memory architectures.	Types of memory, Memory systems, multi level, address translation, memory							
addressing 6 Hrs. Unit 5: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors. 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 2. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 5 Students will be able to explain various parallel processing architectures. 6 6 Students will be able to understand the distributed memory architectures. 6	allocation, Caches, Associative memory, direct mapping, set associative							
Unit S: Introduction to Pipeline and Parallel Processing 6 Hrs. Pipelining, linear pipelining, classification of pipeline processors Interleaved 7 Hrs. Pipelining, linear pipelining, classification of pipeline processors. 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) I Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	addragging							
Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.								
memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, 7 Hrs. Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 5: Introduction to Pipeline and Parallel Processing	6 Hrs.						
Flynn's Classification, Introduction to Associative memory processors, 7 Hrs. Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Hrs. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1. Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2. Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved	6 Hrs.						
Unit 6:Distributed Memory Architecture 7 Hrs. Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. 7 Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) 2. Advanced computer architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Vinit wise Measurable students Learning Outcomes: 1 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-	6 Hrs.						
 Loosely coupled and ughtly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. 	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors,	6 Hrs.						
 Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. 	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory Architecture	6 Hrs. 7 Hrs.						
 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory ArchitectureLoosely coupled and tightly coupled architectures. Cluster computing as an	6 Hrs. 7 Hrs.						
 Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory ArchitectureLoosely coupled and tightly coupled architectures. Cluster computing as anapplication of loosely coupled architecture. Examples – CM*.	6 Hrs. 7 Hrs.						
 2. Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory ArchitectureLoosely coupled and tightly coupled architectures. Cluster computing as anapplication of loosely coupled architecture. Examples – CM*.Textbooks:	6 Hrs. 7 Hrs.						
References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to describe function of microprogrammed control unit. 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory ArchitectureLoosely coupled and tightly coupled architectures. Cluster computing as anapplication of loosely coupled architecture. Examples – CM*.Textbooks:1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition	6 Hrs. 7 Hrs.						
 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel ProcessingPipelining, linear pipelining, classification of pipeline processors Interleavedmemory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors,Unit 6:Distributed Memory ArchitectureLoosely coupled and tightly coupled architectures. Cluster computing as anapplication of loosely coupled architecture. Examples – CM*.Textbooks:1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition2. Advanced computer architecture – Kai Hwang(MGH)	6 Hrs. 7 Hrs.						
 2] Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. 	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH)	6 Hrs. 7 Hrs.						
 Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to describe function of microprogrammed control unit. 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 11 Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH)	6 Hrs. 7 Hrs.						
 Unit wise Measurable students Learning Outcomes: 1 Students will be able to understand the basic organization of computer system. 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to describe function of microprogrammed control unit. 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH)	6 Hrs. 7 Hrs.						
 Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. Students will be able to differentiate and evaluate performance of various memory levels. Students will be able to explain various parallel processing architectures. Students will be able to understand the distributed memory architectures. 	Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors- Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH).	6 Hrs. 7 Hrs.						
 2 Students will be able to differentiate between control unit design methods. 3 Students will be able to describe function of microprogrammed control unit. 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: 1. Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition 2. Advanced computer architecture – Kai Hwang(MGH) References: 1] Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) 2] Computer Organization - Hamacher Zaky (MGH). 	6 Hrs. 7 Hrs.						
 3 Students will be able to describe function of microprogrammed control unit. 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. 	6 Hrs. 7 Hrs.						
 4 Students will be able to differentiate and evaluate performance of various memory levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. 	6 Hrs. 7 Hrs.						
 levels. 5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures. 	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to describe function of microprogrammed control unit. 	6 Hrs. 7 Hrs.						
5 Students will be able to explain various parallel processing architectures. 6 Students will be able to understand the distributed memory architectures.	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to differentiate and evaluate performance of various memory 	6 Hrs. 7 Hrs.						
6 Students will be able to understand the distributed memory architectures.	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to understand the basic organization of computer system. Students will be able to differentiate between control unit design methods. Students will be able to differentiate and evaluate performance of various memory levels. 	6 Hrs. 7 Hrs.						
	 Unit 5: Introduction to Pipeline and Parallel Processing Pipelining, linear pipelining, classification of pipeline processors Interleaved memory organizations, performance evaluation factors. Parallel Processors-Flynn's Classification, Introduction to Associative memory processors, Unit 6:Distributed Memory Architecture Loosely coupled and tightly coupled architectures. Cluster computing as an application of loosely coupled architecture. Examples – CM*. Textbooks: Computer Architecture and Organization - John P Hayes (MGH) 3rd Edition Advanced computer architecture – Kai Hwang(MGH) References: Computer Architecture & Parallel Processing – Kai Hwang & Briggs (MGH) Computer Organization - Hamacher Zaky (MGH). Unit wise Measurable students Learning Outcomes: Students will be able to differentiate between control unit design methods. Students will be able to differentiate and evaluate performance of various memor levels. Students will be able to explain various parallel processing architectures. 	6 Hrs. 7 Hrs. у						

Title of	f the Course: Software Engineering	L	Т	Р	Credit							
Course	ourse Code: UCSE0405 3 3											
Course	Course Pre-Requisite:											
-												
Course Description: This course provides basic concepts, principles of software engineering &												
basics o	basics of Project Management.											
Course	e Objectives:											
1. To ex	pose the students to basic concepts, principles of software e	enginee	ring &	importa	nce of							
SDL	C in their project development work.											
2. To ex	pose the students to software testing techniques and softwa	re quali	ty man	agement	*•							
3. To in	troduce students basics of Object Oriented Modeling and D	esign.										
4. To m	ake the student aware of role of Software Engineering in Pr	oject N	lanagei	nent.								
C	I											
Course	e Learning Outcomes:											
CO	After the completion of the course the student show	ld ha										
CO	After the completion of the course the student show	ina be										
001	able to											
COI	Explain the Software Development Process.			1								
CO2	Illustrate the Software Testing techniques and Quality	y Assui	rancei	n detail								
CO3	Make use of Project management Concepts in the pro-	ject de	velop	nent.								
CO4	Design the solution to the problems using Object C)rientec	d Mod	elling w	ith							
	UML.											

Mapping of Course Outcomes with Program Outcomes and Program Specific Outcomes

CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P O 10	P O 11	P 0 12	PSO 1	PSO 2
CO 1	3											-		
CO 2												-		
CO 3									2		3	-	1	
CO 4		2	3	1	1				3		2		1	2

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

MSE	30									
ISE 2	10									
ESE	50									
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.										
MSE: Assessment is based on 50% of course content (Normally first three modules)										
ESE: Assessment is based on 100% course content with60-70% weightage for course content										
(normally last three modules) covered after MSE.										
Course Contents:										
Unit 1: The software Problem [Text Book-1	1	5 Hrs.								
1.1 Software Problems, Software Engineering	g Problems	• • • • • • • • •								
1.2 Cost, schedule & Ouality, Scale and chan	ge.									
1.3 Software Development process Modules.										
1.4 Project Management Process										
1.5 Software Processes: Process & Project										
Unit 2: Requirements Analysis & specificati	on_[Text Book-1,2]	6 Hrs.								
2.1 Requirements gathering & Analysis										
2.2 Software Requirements Specifications										
2.3 Collecting Requirements, Defining Scope,										
2.4 Creating the Work Breakdown Structur	e, Validating Scope, Controlling									
Scope										
2.5 Basic Principles of Cost Management,										
2.6 Planning Cost Management, Estimating Co	osts,									
2.7 Determining the Budget, Controlling Cos	sts, Formal System Development									
Techniques										
Unit 3: Dosign [Toxt Book_1 2]		7 Hrs								
3 1 Design Concepts		/ 11/5.								
3.2 Function Oriented Design										
3.3 Object Oriented Design										
3 4 Detail Design										
3.5 Verification										
3.6 Metrics										
Unit 4: Object Oriented Modeling and Desig	n [Text Book-3]	6 Hrs.								
4.1 Object Oriented Design : What is Object O	rientation? What is OO									
Development? OO Themes.										
4.2 Modeling as Design Techniques: Modeling	g, Abstraction, Three Models									
4.3 Overview of UML [Text Book-4]										
4.4 Conceptual Model of UML										
4.5 Architecture										
Unit 5: Coding & Testing [Text Book-1]		7 Hrs.								
4.1 Coding & Code Review										
4.2 Lesting										
4.5 Unit lesting										
4.4 DIACK DOX TESUNG										

4.5 White Box Testing	
4.6 Integration Testing	
4.7 System Testing	
<u>Unit 6: Quality Management [Text Book-2,1]</u>	7 Hrs.
5.1 Importance, Planning Quality Management,	
5.2 Performing Quality Assurance, Controlling Quality,	
5.3 Tools and Techniques for Quality Control,	
5.4 Modern Quality Management, Improving IT Project Quality	
5.5 ISO 9000 SEI capability Maturity Model, Six Sigma	
5.6 Agile software Development & Extreme Programming	
5.7 Agile Project Management	

Textbooks:

- 1. 1 Software Engineering : A precise Approach Pankaj Jalote (Wiley India)
- 2. Information Technology Project Management, 7E, Kathy Schwalbe, Cengage Learning (India Edition)
- 3. Object Oriented Modeling and Design with UML, Michel R Blaha, James R Rambaugh, Second Edition
- 4. The Unified Modelling Language User Guide: Grady Booch, James Rambaugh, Lvar Jacobson.

References:

- 1. IT Project Management, 3 E, Joseph Phillips, McGraw Hill Edu. (India) Pvt. Ltd.
- 2. Software Project Management, Bob Huges, Mike Cotterell, Rajib Mall, 5/E, Tata McGraw Hill Edu. (India) Pvt. Ltd.

Unit wise Measurable students Learning Outcomes:

After learning this unit the student will be able to-

- 1. Explain SDLC.
- 2. Explain software testing techniques and software quality management.
- 3. Illustrate basics of Object Oriented Modelling concepts.
- 4. Explain role of Quality in Project Management.

Title of the Course: Object Oriented Progg. Using C++ Lab.	L	Т	Ρ	Cr
Course Code. OCSE0431	2	0	2	3

Course Prerequisite:

Knowledge of C programming

Course Description:

This course exposes students to the concepts of Object Oriented Programming (OOP). It helps students to choose proper OOP concepts to solve different problems. Upon completion, students should be able to write efficient, reusable programs for a given problem using OOP concepts.

Course Learning Objectives:

- 1. To expose the students to concepts of Object Oriented Paradigm.
- 2. To make students understand the use of programming constructs of C++.
- 3. To give hands on exposure to develop applications based on concepts of Object Oriented approach.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	explain object oriented concepts, principles and techniques.
CO2	select appropriate approach from procedural and object oriented to solve the given problem.
CO3	apply various object oriented features to solve real life problems using C++ language.
CO4	make use of exception handling and STL to solve given problems.

CO-PO Mapping:

со	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1											1	1	
CO2	2	1										1		
CO3	1	2	3		1			1		1		1	1	3
CO4	1	2	2		2			1				1	1	2

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/Quiz/Mini-Project assigned/Presentation/Group Discussion/Internal oral etc.

ESE: Assessment is based on practical and oral examination

Course Contents:

Unit 1: Introduction: Introduction to procedural & object-oriented programming, 03 **Hrs.** Limitations of procedural programming, Need of object-oriented programming,

Fundamentals of object-oriented programming: objects, classes, data members,	
methods, messages, data encapsulation, data abstraction and information hiding,	
inheritance, polymorphism.	
Unit 2: Basics of C++ programming: Friend Functions, Friend Classes, Inline	04 Hrs.
Functions, Parameterized constructors, Static class members, Scope resolution	
operators, Passing objects to functions, nested classes, and local classes.	
Unit 3: Inheritance: Need of Inheritance, Concept, public, private, protected	04 Hrs.
inheritance, Single inheritance, Multiple and multilevel inheritance, Hybrid	
Inheritance, Virtual base class, overriding of member functions, static variable,	
static function, friend function, friend class	
Unit 4: Polymorphism: Pointers basics of memory management, New and delete	06 Hrs .
operators, Pointer to object, Pointer to data members, this pointer. Need of	
Polymorphism, concept, Compile time polymorphism or early binding: function	
overloading and operator overloading, operator overloading using member	
function and friend function, overloading - unary, binary, arithmetic operators,	
relational operators, Overloading new and delete operators, insertion and	
extraction operators, Run time polymorphism or late binding using Virtual function,	
pure virtual function, Abstract class, Type conversion	
Unit 5: Files and Streams: Concept of Streams, concept of File, opening and	05 Hrs .
closing a file, detecting end-of-file, file modes, file pointer, reading and writing	
characters, strings and objects to the file, operations to move file pointers i.e	
seekg, seekp, tellg, tellp.	
Unit 6: Advanced C++ features: Introduction to Generic Programming using	06 Hrs.
Templates: Function template and class template, Introduction to Standard	
Template Library (STL), containers, iterators and algorithms, study of container	
template classes for vectors and stacks and related algorithms 2 Exception	
handling: Introduction, syntax for exception handling code: try-catch-throw,	
Multiple Exceptions, Exceptions with arguments	
Textbooks:	
 C++ programming by Robert Lafore 4th Edition (SAMS) 	
The Complete Reference: C++ - Herbert Schildt (TMGH) Fourth Edition.	
References:	
 C++ Programming with language - Bjarne Stroustrup, AT & T 	
2. Object oriented Programming in C++ 3rd Edition-R.Lafore (Galgotia Publications)	
3. C++programming –John Thomas Berry(PHI) • Object –Oriented Analysis & Design:	
Understanding System Development with UML 2.0, Docherty, Wiley India Ltd.	
4. http://www.spoken-tutorial.org/NMEICT Project of Govt. Of India.	
Assignments & Laboratory Work:	
Minimum 10-12 Experiments are to be performed in batches, on the above topi	cs. Term
work should comprise detailed documentation on the below 10-12 experiments.	Students
should implement programs based on the following topics preferably on Linux platfo	orm.
1. Study of OOP features and compare it with POP.	
2. Functions with default (Optional) arguments.	
3. Classes (with constructor) and Objects.	
4. Operator Overloading.	
 4. Operator Overloading. 5. Inheritance 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 8. Type Conversion 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 8. Type Conversion 9. Exception Handling 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 8. Type Conversion 9. Exception Handling 10 Template 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 8. Type Conversion 9. Exception Handling 10. Template 11 File Handling 	
 4. Operator Overloading. 5. Inheritance 6. Memory Management 7. Polymorphism 8. Type Conversion 9. Exception Handling 10. Template 11. File Handling 12 STL 	

Title of	f the C	ourse:	Comp	uter Gr	aphics	Lab]	LT	P	C	redit
Course Code: UCSE0432											2		1	
Course Pre-Requisite: C programming and mathematics														
Course Description: Study and implement basic and core techniques in Computer Graphics														
Course Objectives: To expose students to:-														
1. Understand the need of developing graphics application														
2. Learn algorithmic development of graphics primitives like: line, circle, polygon etc.														
3. Learn the representation and transformation of graphical images and pictures.														
Course Learning Outcomes:														
CO After the completion of the course the student should be														
	able	to	P											
	Dev	elop e	effectiv	ve Op	enGL	prograi	ns to	solve	graph	ics pro	gramn	ning iss	sues,	
CO1	inclu	iding 3	3D tran	sform	ation, o	bjects n	nodellir	ıg, col	our mo	delling	, lightir	ıg, textı	ires,	
	and	ray tra	cing.			-		-		-	-	-		
CO2	Mak	e use	of mo	dern to	ools suc	ch as b	lender,	adobe	e flash	for dev	elopin	g comp	outer	
02	grap	hics ap	oplicat	ions.							Ĩ	0 1		
CO3	Illus	trate e	ffects	of vario	ous illui	minatio	n mode	els and	ray tra	cing mo	ethods	in comj	outer	
05	grap	hics.												
) Mani	nina												
0-10	Jurap	ping.												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	3								3	3
CO2	2	2	3	2	3								3	3
	_													
CO3	2	2	3	2	3								3	3
Assess	nents :													
Teache	er Asse	ssment	:											
One con	mpone	nts of I	n Seme	ster Ev	aluation	(ISE) a	nd one l	EndSer	nester E	Examina	tion (ES	SE) havi	ng 50%	and
50% w	eights r	respecti	ively.											
l				٦.4	1						A			

	Marks	Assessment ISE			
	25				
	25				
Course Co	ontents:				
Experime	nt No. 1:- : OpenGL programming to use basic grap	phics primitives	2 Hrs		
Experime transform	nt No. 2:- Write a menu driven program in C to imp ation on two dimensional objects like rotation, refle	plement two dimensional ection, scaling and shearing using	2 Hrs		

Course Contents:	
Experiment No. 1:-: OpenGL programming to use basic graphics primitives	2 Hrs
Experiment No. 2:- Write a menu driven program in C to implement two dimensional transformation on two dimensional objects like rotation, reflection, scaling and shearing using Open GL	2 Hrs

Experiment No. 3:- Install the necessary packages in CentOS/Ubuntu for running the graphics program and include graphics.h header/libraries file in gcc compiler	2 Hrs
Experiment No.4:- Implementing Bresenham's line drawing algorithm.	2 Hrs
Experiment No. 5:- Implementing Bresenham's circle generation algorithm.	2 Hrs
Experiment No. 5:- Implementing Edge fill algorithm.	2 Hrs
Experiment No. 6:- Implementing Seed fill algorithm.	2 Hrs
Experiment No. 7:- Implementing Sutherland-Cohen line clipping algorithm.	2 Hrs
Experiment No. 8:- Implementing Basic Illumination Models	2 Hrs
Experiment No. 9:- Implementing Basic Ray Tracing algorithm.	2 Hrs
Textbooks:	
1. Computer Graphics Using OpenGL F.S. Hill Jr. Stephen M. Kelley, (Pearson Education).	
Unit wise Measurable students Learning Outcomes:	

T:41 f	the Commentary Networks Lab	т	т	р	Courd!4					
Title of	the Course: Computer Networks Lab	L	I	P	Creatt					
Course	ourse Code: UCSE0433 2 1									
Course	Course Pre-Requisite: Data Communication and Networking Theory & Lab.									
Course	Description: Study top four layers of OSI networking model and	nd imp	lement	exam	ple programs at					
differen	at layers and use different networking tools.									
Course	Objectives: To expose students to:-									
1.	Basic concepts of Client Server model of Internet using Socket prog	grammi	ng							
2.	Logical addressing of computers/nodes in LAN/WAN.		-							
3.	Application layer protocols such as HTTP, FTP, TELNET, DHCP e	tc.								
4.	Networking tools such as Packet Tracer TCPDUMP and Wireshark	to anal	yze pro	otocols						
Course	Learning Outcomes:									
CO	After the completion of the course the student should be									
	able to									
CO1	Design network for an organization as per the requirements									
CO2	Design UDP and TCP client server program to demonstrate simple, iterative and concurrent server									
CO3	Demonstrate working of different routing protocols and application	n layer	protoc	cols usi	ing					
	Wireshark/Packet Tracer/TCPDump	-	•		-					
CO4	Design client client server program to send and receive email, web	pages.								
CO5	Install and Configure FOSS server to provide different services									

CO-PO Mapping:

CO	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2							1	2	2		1		2
CO2			3					1						
CO3		1			2			1					2	
CO4			3		2			1				1	2	
CO5					2	1	1	1						

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50% and 50% weights respectively.

	Marks	Assessment							
	25	ISE							
	25 ESE(OE)								
	LI								
Course C	Contents:								
Experime	ent No. 0:- Socket Programming API in C/C++		2 Hrs						
Experime	ent No. 1:- Well Known Server and Client		2 Hrs						
Experime	ent No. 2:- Routing Algorithm and Protocols		4 Hrs						
 A) In B) In C) S 	nplementation of Shortest Path routing algorithm in nplementation of Distance Vector routing algorithm imulation of Routing Protocols	n C/C++ programming language $m in C/C++$ programming language.							
Experime Class of a	ent No. 3:- Implementation of C program to find N given input IPv4 Address.	etwork ID, Host ID and the network	2 Hrs						
Experime	ent No. 4:- Implementation of Iterative Client / Se	erver Model using TCP Sockets							
Experime	ent No. 5:- Implementation of Concurrent Client /	Server Model using TCP Sockets.	2 Hrs						
Experime	ent No. 6:- Implementation of Client / Server Mod	el using UDP sockets.	2 Hrs						
Experime	ent No. 7:- Communication using IPv6		2 Hrs						
Experime	ent No. 8:- Packet Capturing and Analysis		2 Hrs						
Experime	Experiment No. 9:- Demonstration of working of DHCP, DNS, FTP, SSH, TELNET protocols								
Experiment No. 10 :- Install and Configure different types of services on FOSS Server									
Textbook	KS:								
1. Compu	tter Networks - A Top-down Approach, Andrew S	. Tanenbaum, Fifth Edition, Pearson Ed	ucation						
2.TCP/IP	Protocol Suite by B. A. Forouzan, TMGH Publicat	tion							
3. Unix N	letwork Programming – W. Rhichard Stevens Seco	nd Edition (PHI)							

4. Linux User guide available on Internet (freeware).

Title of the	Course: I	Mini Pr	oject							L	Г Р	C	redit
Course Cod	e: UCSE	0451									2	1	
Course Pre-	Course Pre-Requisite:												
UBSH0208- Computer Programming													
UBSH0238- Computer Programming Lab													
UCSE0303-Data Structures													
Course Dese	Data Stri	Imploy	Lau	on of N	/ini Dr		ainaD	nogrom	mina C	oncont	a		
Course Dest	ripuon: etives 7	<u>Impien</u>	nentati	onte to	//////////////////////////////////////	oject u	Ising PI	rogram		oncept	5.		
	lentify th	e proble	m defi	nition									
2 To f	ollow the	method	s and t	asks of	Softw	are eng	ineerin	σ					
3. To u	ilize the	e technio	iues, ski	ills and	moder	n engin	eering	5 tools ne	cessarv	for buil	ding th	e projec	t
4. To e	fectively	demon	strate a	nd pres	ent the	ideas,	method	ology a	ind techi	nology	used for	the pro	ject
Course Lean	ning Ou	tcomes:	:	•						07			9
CO Aft	er the co	mpletio	n of th	e cours	se the st	tudent	should	l be abl	e to				
CO1 Def	ine the p	roblem s	statemer	nt of th	e softw	are pro	ject.						
CO2 Org	anize an	effecti	ve proj	ject pla	an with	n clear	and fi	nite ob	ojectives	and d	ocumer	nt the	
syn	opsis and	project	reports	•									
CO3 Mo	lel the va	arious m	odules	of proj	ect with	n the he	lp of D	FDs , F	lowchar	ts etc.			
CO4 Dev	elop the	modules	s of pro	posed s	ystem.								
CO5 Der	nonstrate	the test	cases f	or vali	lation c	fnron	and eve	tom					
	1011511 ate	the test	Cases I	or vand		n prope	JSEU Sys	stem.					
CORON	•												
CO-PO Ma	oping:		I		1	r	1	r			PO1		
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	2	P301	P302
CO1	3											-	2
~~~	5											2	2
CO2	2								2	2		-	-
CO3												3	2
	_	3		2								2	2
CO4		3						2			2	2	2
CO5			2									2	-
	_		Z										
Assessments	: accmont:												
One compon	ent of In	Semeste	r Evalu	uation (	ISE) an	id one F	and Ser	nester I	Tyamina	tion (F	SF) hav	ing 25 a	nd 50
Marks respectively													
Marks Assessment													
				25				ISE	r				
				50				ESE(P	DE)				
									,				
Assessments :         Teacher Assessment:         One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 25 and 50         Marks respectively.         Marks       Assessment         25       ISE         50       ESE(POE)									nd 50				

#### **Course Contents:**

The mini project should be undertaken preferably by a group of 3-4 students who will jointly work and implement the project. The group will select a project with the approval of the guide and submit the name of the project with a synopsis, of the proposed work, of not more than 02 to 03 pages. The mini project should consist of defining the problem, analyzing, designing the solution and implementing it using a suitable programming language or tool. A presentation and demonstration based on the above work is to be given by the group. The work will be jointly assessed by a panel of teachers of the department. A hard copy of project report of the work done is to be submitted along with the softcopy of the project during ESE.

Sr. No.	Parameter	Unacceptable (E)	Marginal (D)	Adequate-Good (B+C)	Excellent (A)
1	Requirement Analysis	Irrelevant	Partially	Properly with few points left	Requirement analysis with all possible strategies defined
2	Design	No meaningful Design	Incomplete System Design	Presence of system design but no Proper Detailed Design	Presence of Correct system Design and Detailed Design
3	Coding & Testing	Code will not run	Code Runs Partially	Code runs with few errors or warnings	Code runs without errors for defined test cases
4	Report(Content)	Not proper	Relevant but no references and details	Content with relevant data and few spelling errors	Good Content with no spelling errors

#### **Rubrics for Evaluation**

Title of the Course: Soft Skills	L	Т	Ρ	Credit
Course Code:UCSE0461	-	•	2	-
Course Pre-Requisite:				

**Course Description:** Soft skills are a combination of people skills, social skills, communication skills, character traits, attitudes, career attributes, social intelligence and emotional intelligence quotients among others that enable people to navigate their environment, work well with others, perform well, and achieve their goals with complementing hard skills.

#### **Course Objectives:**

- 12. Explain the importance of soft skills in corporate life.
- 13. Develop written skills of students to write corporate letters/emails.
- 14. Develop communication skills required for corporate etiquettes and
- ethics. 15. Develop presentation skills required for professional life.

16. Develop the ability to work in team.

#### **Course Learning Outcomes:**

CO	After the completion of the course the student should be	Bloo	's Cognitive
	able to	level	Descriptor
CO1	Make use of effective communication skills in the corporate world.	3	Applying
CO2	Construct effective business letters/emails.	6	Creating
CO3	Demonstrate the corporate etiquettes and ethics	2	Understanding
<b>CO4</b>	Construct effective business presentations.	6	Creating
<b>CO5</b>	Work in team and show leadership skills.	2	Understanding

#### **CO-PO Mapping:**

CO	PO 1	PO 2	<b>PO</b> 3	PO 4	<b>PO</b> 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PSO2
CO 1												1	1	
CO 2												1	1	
CO 3								2					2	
CO 4												1	1	
CO 5									2				1	

#### **Assessments : Audit Course**

Course Contents:	
Unit 1: Art of communication	02 Hrs.
Introduction to Soft Skills, Communication Theory, Effective Communication Skills,	
Barriers and Filters, Active Listening, Non Verbal Communication, Body Language.	
Unit 2: Business Writing Skills	03 Hrs.

Business Letters/Emails - Format and Style, Types of Business Letter/Email – sales, order, complaint, adjustment, inquiry, follow-up, letter of recommendation, acknowledgement and resignation.	
<b>Unit 3: World of teams</b> Team concept, Elements of team work, Building an effective team, Role of Team Leader, Team based activities.	02 Hrs.
Unit 4: Adapting to corporate life	02 Hrs.
Corporate Grooming and dressing Business Etiquette Business Ethics Dinning Etiquette Ethics policy.	
Unit 5: Discussions, decisions and presentations What are group discussions, Types of Group Discussions, Corporate Presentations, Decision making, Resume Writing.	03 Hrs.
Unit 6: Job Interview: Types of Interviews -Telephonic, face to face, video, structured,	02 Hrs.
unstructured, behavioral, problem solving, panel, Importance of body language.	
<ul> <li>Textbooks:</li> <li>6. Personality Development and Soft- Skills, Barun K. Mitra, Oxford University Press.</li> <li>7. Business Communication : Making Connections in a Digital World 11th Edition (English, Paperback, Marie E. Flatley, Neerja Pande, Raymond V. Lesikar, Kathryn Rentz)</li> </ul>	
Unit wise Measurable students Learning Outcomes: Unit 1: Art of communication UO1.1) To demonstrate the effective communication skills. UO1.2) To make use of appropriate body language.	
Unit 2: Business Writing Skills UO2.1) To interpret the importance of business writing skills. UO2.2) To apply the appropriate business etiquettes in business letter/email.	
<b>Unit 3: World of teams</b> UO3.1) To explain the importance of team in corporate world. UO3.2) To demonstrate various team activities.	
Unit 4: Adapting to corporate life UO4.1) To demonstrate business etiquettes and ethics. UO4.2) To demonstrate corporate dressing.	
Unit 5: Discussions, decisions and presentations UO5.1) To demonstrate group discussion activity. UO5.2) To apply presentation skills in a presentation.	